一、FytoScope LED光源植物培养箱与传统植物培养箱的区别和优点
植物培养箱是生物实验室常规仪器之一。以前的研究中,只要求培养箱能够使种子萌发、基本满足植物的生长即可。但在真正严格的植物生理生态研究中,传统培养箱是远远不能够达到要求的。而FytoScope LED光源植物培养箱是由植物生理科学家直接参与设计的,才是真正用于精确科研实验的植物培养箱。
众所周知,光是植物生长中最重要的环境因子之一,它不仅为植物光合作用提供辐射能,还为植物提供信号转导,调节其发育过程。植物在它的整个生命周期中始终处于一个一直在变化的光环境中,在长期的进化中,植物不仅适应了光环境的变化,而且还能相互影响而改变周围的光环境。因此,培养箱光源就是决定其品质最重要的部分。
到达地面的太阳光波长大约从300~2600nm,其中对光合作用的有效波长在400~700nm之间,其中425~490nm的蓝光以及610~700nm的红光对光合作用贡献率最大,而520~610nm(绿色)的光线被植物吸收的比率很低(闫新房,2009)。
LED(1ight—emitting diodes),即发光二极管的一大特点是可以发射出纯度极高的单色光(图1)。因此从LED诞生之初,红光和白光LED就被用于植物培养。
图2.不同光源光谱图,上左:太阳光;上中:白炽灯;上右:荧光灯(日光灯);下左:卤光灯;下中:冷白光LED;下右:暖白光LED
但在很多研究中,科学家希望尽量模拟自然太阳光来培养植物。由图2中能够正常的看到白炽灯和荧光灯虽然发出的都是白光,实际上其光谱都与太阳光谱有很大差异。与太阳光谱最为类似的就是卤光灯和白光LED。但是,卤光灯由于有相当一部分能量都用于发射植物不能利用的750-2600nm波段近红外辐射。美国GE公司的资料指出这部分能量占到总辐射能量的76%。同时,近红外辐射又会有极强的光辐射增温效应,长时间照射会对培养的植物造成损伤。而LED光源的一大优点就是发热量极少。这从图2的光谱图中也能够正常的看到白光LED的近红外辐射是极低的。
光除了给植物提供能量,还会直接通过光敏色素和隐花色素来调节植物的多种生理反应(图3)。光敏色素有两个互变异构体——红光光敏色素(Pr)和远红光光敏色素(Pfr)。Pr吸收波长为660 Bin左右的红光,Pfr吸收波长为730nm左右的远红光。光敏色素调节多种不同植物对光的反应,包括光周期,种子萌发、展叶、下胚轴伸长和脱黄化。隐花色素则吸收蓝光和紫外光范围的光波。
因此FytoScope在白光LED和红蓝LED以外,还配备了远红光光源。除了为植物生长提供最佳的光质,同时满足植物光形态建成的需要。另外,FytoScope能够给大家提供绿光LED与红蓝LED组成三原色光源系统,通过调整三原色的比例,能够发出可见光谱中任意一种颜色的光,用于不同光质对植物影响的研究。FytoScope也能定制其他颜色的单色光。
白炽灯、卤钨灯光效为12-24lm/W,荧光灯50-70lm/W,钠灯90-140lm/W,大部分的耗电变成热量损耗。而理论上LED发光源光效可达到300lm/W。
FytoScope LED光源植物培养箱可以在30-50cm的距离上实现最大2000μmol(photons)/m2.s的光强,满足从藻类、拟南芥到小麦、玉米、水稻等高耐光植物的培养需求,并可以有效的进行各种高光/低光胁迫实验。
传统光源中,荧光灯不能调控光强,只可以通过增加或减少灯管数量来粗略控制光强,并不可以进行精确实验。白炽灯、卤钨灯虽能调节光强,但是由于光谱、光辐射升温等原因,并不是很适用于植物培养。
FytoScope可以分别精确控制每种单色光的光强、光照时间,并能够最终靠软件实现动态变化,模拟昼夜周期变化、日升日落等自然界中光环境变化,以及其他各种任意变化。同时温湿度也可以随着光强同步变化,模拟昼夜周期中气温的变化(图4)。
⑤无污染,作为全固体发光体,不含金属汞、耐冲击、不易破碎、废弃物可回收,
传统培养箱只能给植物提供自然环境中的空气。但对于很多研究温室效应或者其他气体对植物影响的科学家,他们要精确控制培养植物的气体组分。FytoScope配备了GMS150高精度气体混合系统,可控制最多4种生长箱中的气体浓度。标配版可控制空气/氮气和CO2,也能够准确的通过用户需要配置其他气体的控制功能。系统中内置高精度质量流量计,调控精度高于±2%,稳定性高于±0.1%。在研究温室效应时,可以将CO2浓度精确控制到ppm级。
图5. 配备GMS150高精度气体混合系统的FMT150藻类培养与在线.植物生理生态监测
传统培养箱只能对植物进行一般性培养,并不能在培养过程中自动获得植物生长相关的生理生态监测数据,还需要研究人员将植物取出手动测量。不但耗费人力,而且还会对植物的培养过程造成干扰。
FytoScope配备了MP100叶绿素荧光自动监测仪。MP100内置有目前国际上荧光研究的几乎所用测量程序,包括Ft、QY、OJIP、NPQ、光响应曲线。能够适用于光合活性研究、自然环境条件下植物光合能力的长期监测、植物胁迫检测、除草剂测试、人工或野外条件下的植物生长情况监测等。
研究者能够最终靠FytoScope设计不同的昼夜周期、光质/光强变化、高温/低温胁迫、气体组分等实验,再通过MP100实时监测植物荧光生理指标,进而完成一个完整的植物生理实验。这使得FytoScope单独完成一个实验过程,成为真正的科研仪器,而不同于传统培养箱仅仅是培养实验材料的工具。
FytoScope配备有多种尺寸型号,满足多种用户的需求。其内部容积如下:
§ Walk-In FytoScope:超大型版,尺寸可定制,可与PlantScreen植物表型成像分析系统组合成为更先进的研究分析系统。
§ 温度控制范围:+15℃至+50℃(最大光照),+7℃至+50℃(无光照)
§ 温控升级(可选,不可同时选光源升级):+7℃至+55℃(最大光照),可定制更大的温控范围
§ 高精度气体混合系统(可选):可控制最多4种生长箱中的气体浓度,标配版可控制空气/氮气和CO2
§ 用户自定义编程控制(可选):用户可自定义光强及维持的时间,设置多达224种光照的阶段性变化,进行昼夜周期模拟
Duarte使用溶解氧测量仪(RF-O2荧光光纤氧气测量技术)测量两种植物在不同CO2和光照条件下的放氧速率(图8);同时通过FytoScope中的叶绿素荧光监测仪来测量OJIP曲线、Fv、QY、ABS/CS、TR0/CS、ET0/CS等十余项荧光参数来分析对光合系统的影响(图9)。
最后,Duarte认为盐沼会通过水体的氧化作用与吸收过量CO2的酸化缓冲作用,在气候平均状态随时间的变化的补偿效应中扮演重要的角色。
Santos则使用FytoScope来研究Zn在灯心草属模式种Juncus acutus中的超积累(Santos,2014)。通过设置一系列不同浓度的Zn胁迫梯度来培养J. acutus,测量发芽率、干重等生长指标(图10)。又用FP100叶绿素荧光测量仪来分析Zn对其光合系统的损伤(图11)。
Santos最终的结论是表现出了J. acutus对高浓度Zn的高耐受性,同时能抵御Zn对叶绿体膜造成的过量氧化物积累的伤害。因此,J. acutus能够适用于对陆地和水体的重金属污染生态修复。
Domingues认为P. tricornutum在高光下会将总蛋白更多的分配给光抑制靶蛋白D1,并激活D1修复循环来限制光抑制。
1. 闫新房等,2009,LED光源在植物组织培养中的应用,中国农学通报,12:42-45
① 凡本网标注明确来源:教育装备采购网的全部作品,版权均属于教育装备采购网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并标注明确来源:教育装备采购网。违者本网将追究有关规定法律责任。
② 本网凡标注明确来源:XXX(非本网)的作品,均转载自其它媒体,转载目的是传递更加多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵犯权利的行为的直接责任及连带责任。如别的媒体、网站或个人从本网下载使用,必须保留本网注明的稿件来源,并自负版权等法律责任。
③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为放弃相关权利。